July 1988 Revised August 2000

.

FAIRCHILD

SEMICONDUCTOR

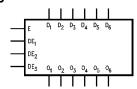
100323 Low Power Hex Bus Driver

General Description

The 100323 is a monolithic device containing six bus drivers capable of driving terminated lines with terminations as low as 25Ω . To reduce crosstalk, each output has its own respective ground connection. Transition times were designed to be longer than on other F100K devices. The driver itself performs the positive logic AND of a data input (D₁-D₆) and the OR of two select inputs (E and either DE₁, DE₂, or DE₃).

Enabling of data is possible in multiples of two, i.e., 2, 4 or all 6 paths. All inputs have 50 $k\Omega$ pull-down resistors.

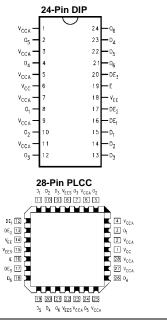
The output voltage LOW level is designed to be more negative than normal ECL outputs (cut off state). This allows an emitter-follower output transistor to turn OFF when the termination supply is –2.0V and thus present a high impedance to the data bus.


Features

- 50% power reduction of the 100123
- 2000V ESD protection
- -4.2V to -5.7V operating range
- Drives 25Ω load

Ordering Code:

Order Number	Package Number	Package Description					
100323PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide					
100323QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square					
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

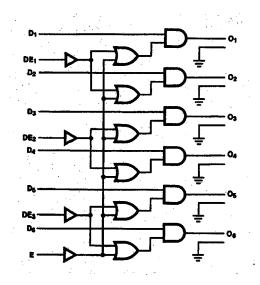

Logic Symbol

Pin Descriptions

Pin Names	Description					
D ₁ –D ₆	Data Inputs					
D ₁ –D ₆ DE ₁ –DE ₃	Dual Enable Inputs					
E	Common Enable Input					
O ₁ -O ₆	Data Outputs					

Connection Diagrams

© 2000 Fairchild Semiconductor Corporation DS009877


100323

Truth Table

E	DEn	D _n	D _{n+1}	On	O _{n+1}
L	L	Х	Х	Cutoff	Cutoff
Х	Н	L	L	Cutoff	Cutoff
Х	Н	L	Н	Cutoff	н
Х	н	Н	L	н	Cutoff
Х	н	Н	Н	н	н
Н	Х	L	L	Cutoff	Cutoff
н	Х	L	н	Cutoff	н
н	Х	Н	L	н	Cutoff
Н	Х	Н	Н	н	н

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Cutoff = Lower-than-LOW State

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature Maximum Junction Temperature V_{EE} Pin Potential to Ground Pin Input Voltage (DC) Output Current (DC Output High) ESD $\begin{array}{l} -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to } +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to } +0.5\text{V} \\ -50 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature Supply Voltage (V_{EE}) 0°C to +85°C -5.7V to -4.2V 00323

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

DC Electrical Characteristics (Note 3)

 $V_{FF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to +85°C

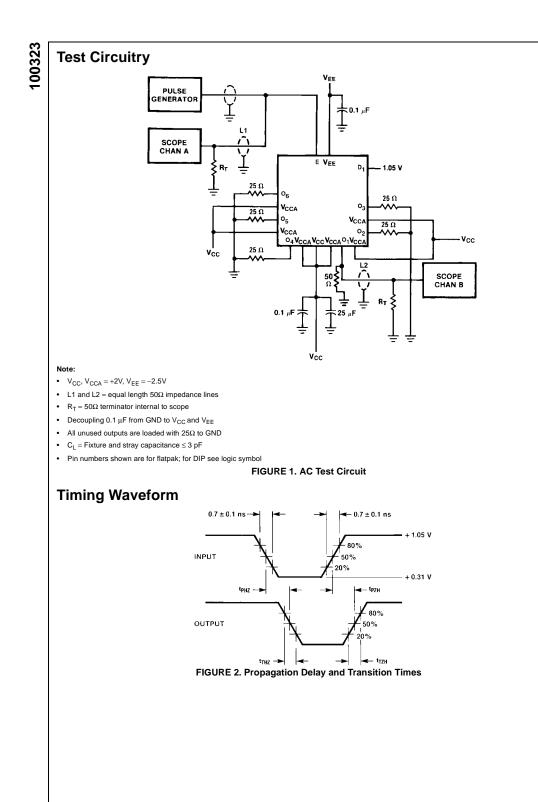
Symbol	Parameter	Min	Тур	Max	Units	Conditions			
VIH	Input HIGH Voltage	-1165		-870	mV	Guaranteed High Signal for ALL Inputs			
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed Low Signal for ALL Inputs			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH (max)}$ or $V_{IL (min)}$ Loading with 25 Ω to -2.0			
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH (min)}$ or $V_{IL (max)}$ Loading with 25 Ω to -2.0			
V _{OLZ}	Cut-Off LOW Voltage			-1950	mV	$V_{IN} = V_{IH (min)}$ or $V_{IL (max)}$ Loading with 25 Ω to -2.0			
I _{IL}	Input LOW Current	0.50			μΑ	V _{IN} = V _{IL (min)}			
I _{IH}	Input HIGH Current			240	μΑ	$V_{IN} = V_{IH (max)}$			
I _{EE}	Power Supply Current	-121	-91	-57	mA	Inputs Open			

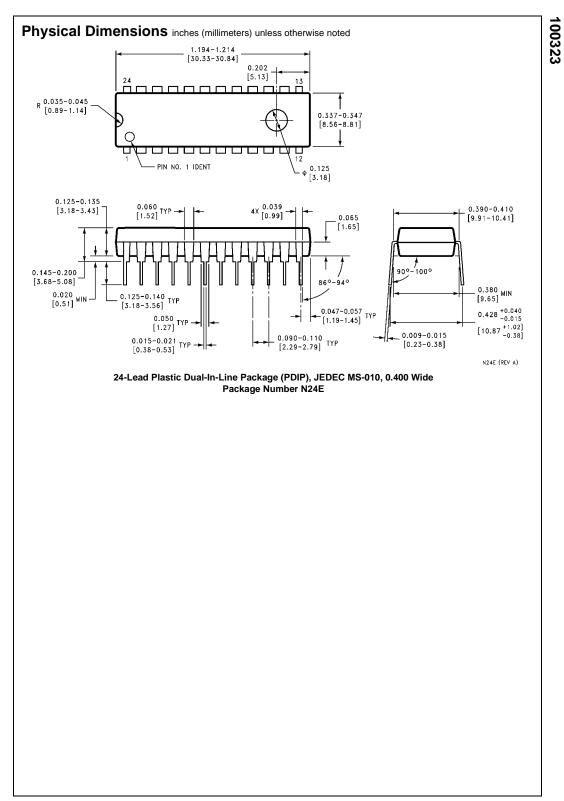
Note 3: The specified limits represent "worst case" values for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

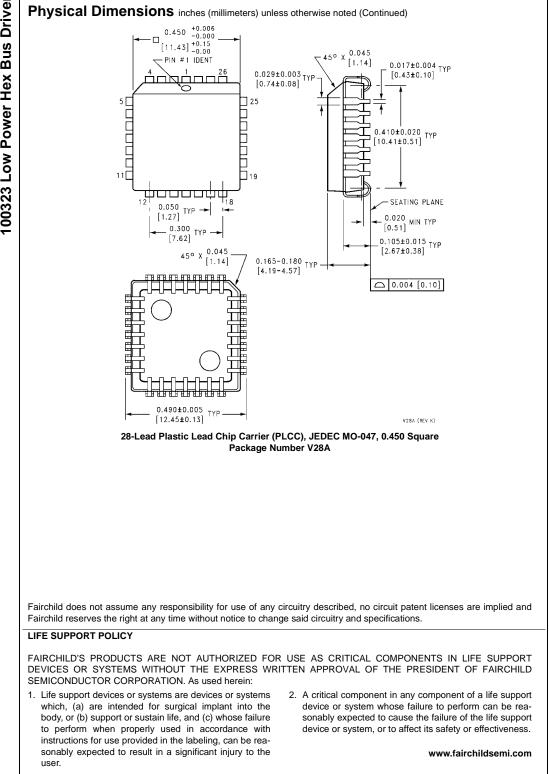
DIP AC Electrical Characteristics (Note 4)

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

Symbol	Parameter	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PZH}	Propagation Delay	1.90	3.60	1.90	3.60	2.00	3.80	ns	
t _{PHZ}	Data to Output	1.30	2.70	1.30	2.70	1.50	2.70	115	
t _{PZH}	Propagation Delay	1.90	3.60	1.90	3.60	2.00	3.90		
t _{PHZ}	Dual Enable to Output	1.60	3.00	1.60	3.00	1.70	3.40	ns	Figures 1, 2
t _{PZH}	Propagation Delay	1.80	3.50	1.80	3.50	2.00	3.80	ns	Tigules 1, 2
t _{PHZ}	Common Enable to Output	1.50	2.90	1.50	2.90	1.60	3.00	115	
t _{TZH}	Transition Time	0.50	1.80	0.50	1.80	0.50	1.80	ns	
t _{THZ}	20% to 80%, 80% to 20%	0.35	1.40	0.35	1.40	0.35	1.40	115	


Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


PLCC AC Electrical Characteristics (Note 5)


 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	conditions
t _{PZH}	Propagation Delay	1.90	3.40	1.90	3.40	2.00	3.60	ns	
t _{PHZ}	Data to Output	1.30	2.50	1.30	2.50	1.50	2.70	115	
t _{PZH}	Propagation Delay	1.90	3.40	1.90	3.40	2.00	3.70		
t _{PHZ}	Dual Enable to Output	1.60	2.80	1.60	2.80	1.70	3.00	ns	Figures 1, 2
t _{PZH}	Propagation Delay	1.80	3.30	1.80	3.30	2.00	3.60		Tigules 1, 2
t _{PHZ}	Common Enable to Output	1.50	2.70	1.50	2.70	1.60	2.80	ns	
t _{TZH}	Transition Time	0.50	1.70	0.50	1.70	0.50	1.70		
t _{THZ}	20% to 80%, 80% to 20%	0.35	1.30	0.35	1.20	0.35	1.30	ns	

Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

100323 Low Power Hex Bus Driver